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A thermodynamic and mathematical analysis was performed of liquidus and solidus lines in binary 
2nd kind ionic systems with unlimited solubility in both the liquid and solid states. Limiting 
va lues of tangent slopes of liquidus and solidus lines at melting points of pure components 
were calculated. The analysis is supplemented by two examples. 

In contrast to our earlier paper!, where we have performed a theoretical analysis 
of liquidus and solidus lines in binary NA- NBt ionic system with a common ion and 
displaying unlimited solubility in both the liquid and solid states, here we solve th'e 
problems in general. 

The analysis of the course of liquidus and solidus lines refers again to binary ionic 
systems. However, we consider systems with a common ion and without a common 
ion, but with unlimited solubility in both the liquid and solid states. We assume that 
the systems form solutions of the 2nd kind , i.e. such solutions which generally satisfy 
the relation: lim (daJdx i) =l= 1 [for Xi -> 1J for i = 1,2. Symbol ai denotes the acti
vity and Xi mole fraction of component i. 

Our aim is to express analytically the functional dependences x~ = fl (T), xl = 
= fiT), where symbols x~ and x~ denote mole fractions of component 1 in liquidus 
and solidus, resp., and Tis absolute temperature. Then we will derive limiting values 
of tangent slopes at melting points Ti and T~ of both pure components. 

Derivation of Liquidus and Solidus Lines 

Let us consider a solid-liquid equilibrium. For this case the classical thermodynamics 
yields the fundamental relations, which have been derived in this journal2 and in 
which the validity of the relation LlC~/s ~ 0 has been assumed 

( IS) a~ [LlH~ ( 1 1)] M a l' a 1 = ~ = exp R TI - T ' (1) 
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Q az, az = - = exp - - - - - . ( I • ) a ~ [I1H~ ( 1 1 )] 
a~ R Ti T 

(2) 

Here, I1C~/s denotes the change in the molar heat capacity during the solidus-liquidus 
phase transition at constant pressure, I1H~ is the change in the molar enthalpy of 
pure component i at its melting temperature Tt during the solidus-liquidus phase 
transition. 

To be able to pass from activity to composition expressed in mole fractions, we 
need to know the functional relation a = qJ(x). Generally, however, it is impossible. 
Therefore we usually replace it by relations which for the most part follow from diffe
rent models. However, up to the present time no exhaustive analysis of possibilities 
has been performed how to employ these functional relations for solving the given 
problems. 

The classical ideal case of a i = Xi has been solved in this journalz. GeneraIIy, 
the activity is a function of composition and temperature, i.e. a = qJ(x, T). However, 
we are going to deal only with the solidus-liquidus equilibrium, where the activity 
depends only on composition, i.e. a = cp(x). Therefore we assume the validity of the 
general functional relations in the form of 

a~ = (Pl(xD a~ = t/tl'D (3) 

a~ = Ql(X1) = QI(1 - xD = cpz(xi) a~ = Qz(x~) = Qz(1 - xD = t/tz(xD 

in which we make use of the identities X 1 + x~ = 1, x~ + x~ = 1. Further we "assume 
that functions (3) are on interval (0,1) monotonous 3

,4, differentiable and possess 
right and left limits at the boundary points of this interval. These limits must satisfy 
the foIIowing boundary conditions: 

lim qJl(xD = 0 lim t/t1(xD = 0 
111-+0+ XlS-+O+ 

lim qJl(xD = 1 lim t/tt(xD = 1 
Xl1-fol_ Xl&-+ 1-

lim qJz(xD = 1 lim t/tz(xD = 1 
Xl1-+0+ Xl S -+0+ 

lim CP2(xD = 0 lim t/tz(xD = 0 (4) 
Xll-+l_ x1S-+1_ 

where symbol xt -+ 0+ denotes the right limit and symbol x~ ~ 1_ the left limit. 
By inserting (3) into (1) and (2) we obtain the set of equations 

(5) 
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(6) 

which express implicitly on interval (Tf, TJ) the required functions xi = f,(T), 
x~ = fiT) with the range of functional values of (0,1). 

If functional relations (3) are monotonous and differentiable on the closed interval 
<0,1 ) , fu'nctions xi = f,(T) and xl = fz(T) are given implicitly by Eqs (5), (6) on 
the closed interval <T[, Ti) . 

In the following we will distinguish the two cases: a) if x1 resp. x! may be expressed 
explicitly from (5) or (6) as functions of M , x~ resp. M, x~, it is then possible to con
struct the so-called characteristic equation for the liquidus resp. solidus line. This 
situation will be denoted as the case with the characteristic equation. 

b) if, due to a complicated form of functional dependences (3), this explicit evaluation 
is impossible, we will denote it as the case without the characteristic equation. 

Case with the Characteristic Equation 

If x~ may be expressed explicitly from (5), we will introduce the notation 

x~ = cP(M, xD . (7) 
Simultaneously it holds 

lim cP(M, xD = 1 lim cP(M, x:) = ° 
T-+T,f T~T2f 

By inserting (7) into (2) we obtain 

Q = 4Jz(xD 
"'2[<P(M, xD] 

and by performing the multiplication we get the equation 

(8) 

which will be denoted as the characteristic equation. 
Coefficients in this characteristic equation depend through functions M and Q 

on temperature T and on values of the enthalpy of fusion flHi and I1H~. Besides 
that they also depend on values of the stoichiometric coefficients p, q, r, t. Thus 
we obtain for each value of TE (T[, Ti) the equation with different coefficients. If 
relations (3) are rational functions of variables x! and x1, the characteristic equation 
is usually the algebraic equation and its order depends on values of the stoichiometric 
coefficients p, q, r, t. 

Collection Czechoslov. Chern. Commun . [Vol. 43] [1978] 



364 Galova, Malinovsky: 

It is well-known s that every algebraic equation of the n-th order possesses n roots. 
H the characteristic equation is to be the equation of the liquidus line, it must have 
for each value of TE (TJ, Ti) at least one root in the interval (0, 1); for this root, 
a continuous change in temperature T from Tj to T[ must correspond to a continuous 
change in composition from ° to 1. 

The unknown quantity in the characteristic equation F(x, T) = ° will be denoted 
by symbol x. That root which lies in the interval (0,1) will be denoted in the following 
by symbol x ~ . Remaining roots, which lie outside the interval (0, 1). have no physical 
meaning for our purpose and therefore they will be neglected. 

The course of the liquidus line yielded by the characteristic equation will be ob
tained in the following manner: for a certain series of temperatures TE (TJ. Ti) 
we compute coefficients in characteristic equation (8) and find its root in the interval 
(0,1). Generally it is the solution of a higher-order equation and therefore it is found 
on a computer by some numerical method. 

Then we compute from (7) the composition of solidus x~ and obtain a series of 
ordered pairs {(T, x D, (T, x~ )}. which serve as a table of required functions x~ = 

= fl(T), x~ = f 2(T) on the interval (Tj, TD· 
Formally, the characteristic equation might be constructed for an arbitrary type 

of functional dependence a = <p(x). It depends on the form of functions (3), i .e. 
on relations expressing the dependence of the activity on the composition of thl( given 
component both in the liquid and in the solid solution, whether the implicit function 
T = f(x) will be determined by an equation constructed in this manner. 

The function T = f(x) is determined implicitly by the equation F(x, '1')-= ° 
in the vicinity of point (xo, To) for which it holds F(xo, To) = ° and at which 8Fj8T =1= 

=1= 0. The first derivative of function T = f(x). which is given implicitly by the equa-
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The Phase Diagram of the NA-NB3 System 
with a Common Ion and the Validity of the 
Temkin Functional Relation between the 
Activity and Composition for the Liquidus 
and with a Classically Ideal Behaviour of the 
Solidus 

T[ = 1200 K, TJ. = 1100 K, tlH[ = 126 
kJ mo]-I (= 30 kcal mol-I). tlHJ. = 21 kJ . 
. mol- 1 (= 5 kcal mol-I), 1 liquidus curve, 
s solidus curve. 

Collection Czechoslov. Chern. Commun. [Vol. 431 [1978] 



Liquidus and Solidus Lines in Binary Systems 

tion F(x, T) = 0, is equal t0 6 

dT 

dx 

_ DF/ax 
aF/?T 

For characteristic equation (8) it holds 

of 

a x~ 
Q di/J 2 ax~ _ d CP2 

dx~ ax~ dx ~ 

365 

(9) 

(10) 

Values of functions M and Q at the boundary points of the interval (T[, TD are equal 

to 

(11) 

(12) 

Since from (4) it follows lim t/lz(xD = ° (for T -> Tn , we obtain the following limiting 

relations: 

(r 3) 

. IlH 2 + M 0 IlH J hm - hm -
[ 

f f · dt/l 2 . ax~J- J 

T-+T2f dx~ T-+T,f aM 
(14) 

By differentiating relation (7) we get 

dx~ ax~ dM ax~ dx\ - = -- + - _ .... 
dT aM dT ax~ dT 
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which can be rearranged to give 

(15) 

1m - - L\ 2 + 0 L\ 1 1m -- 1m - " 
,. dT _ [AHf M AHf ,. dI/J2 I ' ax~ ] 

T-T,r dx~ T-T,r dx~ T-T,f aM 

" L\ 2 1m - + 0 L\ 1 1m -- 1m - 1m -" [
AHf I" ax~ M AHf I' dqJ2 I' ax~]-l I" dT 

T-T,f aX~ T-T2 f dx~ T-T2f aM T-T2f dx~ 
(/6) 

EXAMPLE 

If we assume that in a system of type NpAq- NrBt with a common ion the Temkin functional 
relation 7,8 between activity and composition holds for the liquidus and that the behaviour 
of the solidus is classically ideal, relations (3) take the form of 

I ( I) [ t(1 - xD ]t 
(/2 = qJz X I = I . 

t + x 1(q - t) 

Relation (7) changes to 

S - CP(M I) - 1 [ _ . qx~ ]q 
Xl - , Xl - Ai t + X~ (q _ t) 

and characteristic equation (8) to 

MQ - Q [ qx~ ]q _ M [ t(1 - XD ]t = 0 
t + X\(q - t) t + xHq - t) 

dqJ2 [t(l - xD ]t-l (-t)q 
dx~ =t t+X~(q-t) [t+XHq-t)J2 

dI/J2 = -1 
dx~ 

ax~ 

aM 
1 [ qx~ ]q 

M2 t + x~(q - t) 

1 q 1 axS 

1 [ qx
l ]q-l qt 

ax ~ M t + x~(q - t) [t + x~(q - t)J2 

Collection Czechoslov. Chern . Commull . ['/01. 43] [1978] 



Liquidus and Solidus Lines in Binary Systems 

The corresponding limiting values of the derivatives are equal to 

lim dcp2 = _q 
T->T2f dx~ 

for t> 

for t = 

lim dl{l2 
T-T2f dx~ 

-1 

for q > 

for q = 1 
lim ax~ = 0 

T-T2 f aM 

Then Eqs (13)-(16) assume the form of 

lim dT = /' tR(T[)2jllHi for t > 1 
T->T,f dx~ " (qQo - 1) R(T[)2j(qQo llHD for t = 1 

Ii dT = / -qR(TiYjllH~ for q > 1 

T->~2f dx~ "- (1 - Mot) R(TiY/(tMo llH~) for q = 1 

I
. dT /' + 00 for t > 1 
lin -= , r r 

T-U dx~ " (qQo - 1) R(TIYjllHI for t = 1 

I
. dT _ /' - 00 for q > 1 
1m - " r f 

T-T2 f dx~ , (1 - Mot) R(T2YjllH2 for q = 1 . 

367 

The phase diagram of a concrete solution of this type for q = I, t = 3 and for the following 
choice of values T[ = 1200K, TI = 1100K, ~Hr = 126kJmol-l (=30kcal.mo1- 1

), 

~Hi = 21 kJ mol- 1 (= 5 kcal mol - I) is on Fig. 1. 

Case without the Characteristic Equation 

The course of liquidus and solidus lines can be obtained by solving the set of Eqs 
(5), (6) for different values of the temperature TE (T[, Ti). Since it is a nonlinear 
set of equations, it will be solved by a numerical method. 

For the computation of tangent slopes we will employ a property following from 
Eqs (5), (6), namely that quantities M and Q depend on temperature Tthrough vari

ables x~ and x~ 

M = f(xL xD Q = g(x~, x~) x~ = f2(T) . 
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According to the rule for differentiating composite functions it holds 

dM af dx~ af dx~ 
- = - - +--
dT ax ~ dT (lx~ dT 

dQ ag dx~ ng dxf 
-=~-+-- . 
dT aX l dT ax~ dT 

(t 7) 

By differentiating functions (1) and (2) with res pect to T we obtain a set of linear 
algebraic equations in unknown derivatives dxUdT and dx~/dT This set will be 
solved by the Cramer rule. 

Determinant J of this set is Jacobi's functional determinant 

of aJ~ 
ax~ ax~ 

J= (I8) 
~ og 

ax~ ax~ 

Further it holds 

MAH~ of ~ M L1Hi 
RT2 ax~ ax~ RT2 

JXII 
QL1H~ 

JXl s = 

QAH~ 
(19) 

~ ag 
RT2 ax~ ax~ RT2 

The required derivatives are then equal to 

dTldx~ = J/J'II dT/dx~ = J /J'ls. 

This method for computing the derivatives will be denoted as the method of Jacobians. 
In our case 
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cp; (x\) - lPl(X\) tjJ;(xD 
tjJl'(~) pi(xD 

J = 
cp~(x\ ) _~ix\) tjJ ~J~ll 
tjJ2(xD lJJ~(x~ ) 

where cp~(xD = dCP1(xD/dx: etc. After the computation of the determinants and a 
rearrangement we obtain: 

dT 

dx\ 

dT 

dx~ 

(20) 

ART2 

Q L'lH~cp~(xD tjJlxD - Mf,/1'i cp;(;TI~~~;~) 
(2/) 

where A = - Qcp:(xD tjJ;(xD + Mcp;(xi) tjJ~(xD. By performing the limit of relation 
(20) for T -+ T[ and then for T -+ Ti and taking into account conditions (4) we get: 

(22) 

(23) 

Analogically, by performing the limits for relation (21) we obtain: 

(24) 

(25) 

EXAMPLE 

On solving a MpAq-N,Bt system without a common ion and for which the Temkin functional 
relation between activity and composition holds for both the liquidus and the solidus, relations (3) 
take the form of 
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I _ (I) _ [ r( 1 - x D J' [ t( 1 - x D ]1 
02 - (P2 Xl -

r + X~(p - r) t + x~(q - t) 

Analogous relations hold also for the solidus. The characteristic equation cannot be constructed 
for this case. Therefore we compute limiting values of tangent slopes at melting points of pure 
components by the method of lacobians with the following results: 

lim dT = (r + t) (Qb'(r+t) - L) R(Tf)2 
T_T,f dx~ !:J.Hi Q~/(r+ t) 1 

Jim ~~. 
T_T,f dx~ 

By considering (J 1) and (12), for T[ > TJ. it holds Qo > 1 1\ Mo < 1 and for TI < TJ. it holds 
Qo < 1 1\ Mo > 1. In both cases the limiting values of tangent slopes of both the liquidus and 
solidus lines possess identical signs at T = T[ and T = Ti, which confirms the monotonicity 
of these lines. 
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